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Abstract

An aerodynamic design algorithm for turbulent flows using unstructured grids is described. The current approach uses
adjoint (costate) variables to obtain derivatives of the cost function. The solution of the adjoint equations is obtained by
using an implicit formulation in which the turbulence model is fully coupled with the flow equations when solving for the
costate variables. The accuracy of the derivatives is demonstrated by comparison with finite-difference gradients and a few
sample computations are shown. In addition, a user interface is described that significantly reduces the time required to set
up the design problems. Recommendations on directions of further research into the Navier-Stokes design process are

made.

Introduction

Because of rapid advances in computer speeds, and improvements
flow-solver and grid-generation algorithms, a renewed emphasis hi
been placed on extending computational fluid dynamics (CFD) beyon
its traditional role as an analysis tool to design optimization. Among th
methodologies often employed are gradient-based techniques, in whicl
specified objective is minimized. In this framework, the gradients of th
objective function with respect to the design variables are used to upds
the design variables in a systematic manner to reduce the cost functi
and to arrive at a local minimum. Many techniques have been used
obtain the necessary derivatives, including finite differences, direct dit
ferentiation, and adjoint methods. Many of the methodologies and i
plementations are discussed in Refs. 1, 4, 7, 8, 11-13, 17, 19-24, 29,
and 34.

Although most of the above mentioned references deal with invisci
flows, a few have addressed viscous computations of turbulent flows.
Ref. 18, Hou et al. used a direct differentiation approach in which the d
rivatives of the flow solver were obtained with ADIFGR Ref. 18, the
turbulence model used was the Baldwin-Lofnalgebraic model, which
was differentiated along with the flow equations. Jameson recently d
veloped a design methodology for turbulent flows based on an adjoi
formulation?! Here, the Baldwin-Lomax turbulence model was also em-
ployed but was assumed constant and was therefore not differentiat
This ;ame assumption was also recently used in the work of Soem:
woto:

For unstructured grids, the work to date has been primarily focused «
inviscid computations in both two and three dimensidis:1427.28n
Ref. 1, the adjoint equations and boundary conditions were derived fi
the incompressible Navier-Stokes equations, and some design examg
were demonstrated. However, turbulence effects were not included.
the work of Mohammadi® two-dimensional Navier-Stokes results were
presented in which turbulence effects were included. In this referenc
automatic differentiation was used to differentiate the necessary comp
nents of the flow solver.

The purpose of the present study is to extend the work in Ref. 1 to tl
compressible Navier-Stokes equations, including a fully coupled field
equation turbulence model. However, because a continuous adjoint ¢
proach for unstructured grids requires accurately computed second ¢
rivatives! a discrete adjoint approach is used in the present study. Tt
methodology is discussed, and the accuracy of the derivatives is est:
lished. A few design examples are given to demonstrate the technolog
Also, a user interface has been developed to facilitate setup of the ¢
signs, and a description of the interface is included.

Nomenclature
area of control volume

speed of sound

constant used in Sutherland’s law for viscosity

lift coefficient

drag coefficient

constants used in Spalart-Allmaras turbulence

model

constants used in Spalart-Allmaras turbulence

mode

vector of design variables
component of design variable vector
distance to nearest surface

total energy per unit volume

fluxes of mass, momentum, and energy
inviscid contribution to fluxes

viscous contribution to fluxes
components of inviscid fluxes

components of viscous fluxes

functions used in the turbulence model
functions used in the turbulence model

augmented cost to be minimized
cost to be minimized

Karman constant

free-stream Mach number
B-spline basis functions

unit normal to boundary of control volume
Prandtl number

turbulent Prandtl number



pressure
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Q vector of dependent variables Q Q
G Gy components of heat flux wheref is the outward-pointing normal to the control volume. The
R residual for a control volume vector of dependent variabl€  and the flux veckers  Fand are
given as
Re Reynolds number
S magnitude of vorticity p
S parameterization variable for B-splines Q = pu )
pv
T temperature E
t time
U magnitude of velocity ou v
, Cartesian components of velocit N s 2 - B
Y an comp veoe Fi=fivg] = | PU*PIT+] P ] @
X grid-point locations puv pv +p
X,y Cartesian coordinates (E+p)u (E+p)v
y* wall coordinate and
angle of attack
0Q boundary of control volume 0 0
N o ~ T T ~
y ratio of specific heats Fv=f,i+g,j = Xx i+ Y i@
. ) ) Txy Tyy
M laminar viscosity
UTyy + VT, — Oy UTyy + VT, =0y
T8 turbulent viscosity
0 Wo Here, F; andF, are the inviscid and viscous flux vectors respec-
tively; the shear stress and heat conduction terms are given as
Uy K/ P
. . M.,
] dependent variable for turbulence model Ty = (U+ pt)ae%(ZUX -v,) (5)
p density
constant for turbulence model M., 2
o Tyy = ('J + ut)ﬁéé(zvy_ ux) (6)
Ty Tuy Tyy  Shear stress terms
W costate variables M.,
Txy = Tyx = (IJ + ut)R_e(uy + Vx) (7)
Superscripts:
q, = _.L_ H23 + Et_[ajz (8)
" dimensional quantity x Re(y—1)tPr  Prlbx
~ variation M )
00 u a
q, = Od L [P 9)

Subscripts:
free-stream quantities

Governing Equations

Flow equations

The governing equations are the time-dependent Reynolds-averac
Navier-Stokes equations. The equations are expressed as a systen
conservation laws that relate the time rate of change of mass, mome
tum, and energy in a control volume of area A to the spatial fluxes ¢
these quantities through the volume. The equations (hondimension:i
ized by free-stream density, speed of sound, temperature, viscosi
thermal conductivity, and a reference length) are given as

“Re(y-1)LPr Prloy

The equations are closed with the equation of state for a perfect gas

]

and the laminar viscosity is determined through Sutherland’s law:

+v2)

p = (v-1[E-pl (10)

(1+C)(T/T)*?

— 11
T/Te+C" (1)

VR
H=-==
U'oo

where C* = 198.6/ 460.0 is Sutherland’s constant divided by a
free-stream reference temperature, which is assumeda6e R.



Turbulence model ables). In Eq. (21)|.(Q, D) represents the cost that is to be mini-

For the current study, the turbulence model of Spalart-Allmaras imized. Examples of suitable cost functions include the difference
used® This is a one-equation turbulence model given as between the lift coefficient for the airfoil and a desired lift, the drag
coefficient, and the difference between the pressure distribution and
a desired pressure distribution.

DU _ M, ~ ~ o~ L S
Dt - G_Re{ O0(v +(1+¢,)v)0v]—c, 0%} (12) The variation of Eq. (21) is given by
M Co ot =~ . Re
— ==, £, ——2f HEL 4 g (1-f,)S0 + 25, AU? O~ o~ 1rdR~ @R . OROX[1
Wy W 2't 0 t t =_F° _c hah halhhad
ReCow w2 Lo + %, (1-f,) S0+ g fy, 3l aQQ+0DD+w[6QQ+%+aXGD | @
where The terms invoIvingé can be eliminated by regrouping terms
3 and requiring the coefficients @  to vanish; the costate variables
f, = X (13)  are the solution of the following equations
1 X3 + CV
~ aRT" I, 0
_ & 55 (¥ + G50=0 (23)
X =3 (14) 0Q P0n
. M. § The remaining terms for the variation in the cost function are then
S=S R—eK—ZFZf"z (15) given by
and al = e, WTIR | OROX [T (24)
oD (dD  9XaD
f, = 1-—X (16) - :
vy 1+xf, After the costate variables are determined from Eq. (23), they are
1

used in Eq. (24) to obtain the sensitivity derivatives. Note that this
. . ) = . process requires the solution of both the flow equations and the cos-
In these equationsS  is the magnitude of the vorticity, @nd is thiate equations. However, the derivatives of the cost function with re-
distance to the nearest wall. The functfign is given as spect to all design variables are obtained independently of the num-
ber of design variables.

M1+ cé ° By examining Egs. (5)-(9) along with Egs. (12)-(20), it is apparent
= g0 " 3 a7 that the solution of the flow equations and the turbulent viscosity are
[9° ¥ Cw,0 highly dependent on one another. Therefore, the vector of residuals
that require linearization in Egs. (23) and (24) includes the contribu-

where tions from both the flow equations and the turbulence model. Like-
wise, the dependent variablgd, , include the conserved flow vari-
ables as well a®  so that solving for the costate variables with Eq.

= 6_
g=r+ sz(r Y (18) (23) requires the solution of a block 5x5 system of equations for
two-dimensional calculations and a 6x6 system in three-dimensions.
and Many of the terms in Egs. (12)-(20) have a complex dependency
on the dependent variables, the design variables, and the distance to
M., 0 the wall; these terms must be accurately differentiated in order to ob-
r= Regk2g? (19) tain accurate derivatives. In the present work, the differentiation of

both the flow equations and the turbulence model is accomplished
by “hand differentiating” the code. Although this procedure is some-
what tedious, experiments in which the eddy viscosity was assumed
to be constant (and, therefore, not differentiated) yielded very poor
accuracy with many derivatives of incorrect sign when compared
with gradients obtained with finite differences. The strong coupling
of the flow equations and the turbulence model is in contrast to Refs.
21 and 34 where the constant viscosity assumption was used. How-
ever, in those references, an algebraic turbulence model is used,

The last term in Eq. (12) is used when specifying the transition loce
tion. Although the flow solver includes this term, the computations ir.
the present paper are all assumed to be fully turbulent, so this term
not used. Therefore, the definitionsfof  &jd , which are associate
with these terms, are not given. After Eq. (12) is solvedifor , the
eddy viscosity is computed as

K, = pu, = pof,, (20)  whereas here, a field equation is solved to obtain the eddy viscosity.
In Eq. (24), the terms that involv# [ (dR/dX) [{0X/9D)]D
Adjoint Equations represent the change in the cost function that results from a change

In the adjoint approach for design optimization, a cost function i‘in the grid. Reference 1 shows that the contributions of these terms

defined and augmented with the flow equations as constraints: diminish as the grid is refined except at geometric singularities such
as trailing edges. Because the position of the trailing edge is fixed in

T the present work, these terms are currently not included in the com-
I[Q, D, ¥, X(D)] = 1,(Q,D)+¥ R[Q, D, X(D)] (21)  putations so that Eq. (24) can be evaluated by looping over only a
small subset of edges in the mesh rather than the entire mesh. How-
whereR represents the vector of discrete residiXals, is the locati€Ver, in order to effectively deal with cases that require derivatives at
of the grid pointsD is the vector of design variables, hd  are ththe trailing edge and to better ensure convergence of the optimiza-
Lagrange multipliers (also referred to as the costate or adjoint var



tion procedure, even on coarse grids, it is recommended that theis not drastically effected by the choice of step size. For this grid
terms be included. under these flow conditions, the maximum turbulent viscosity in the
flow field is approximately 2500.
Solution Procedures

For the flow equations, the inviscid flux contributions are evaluatec
by using an approximate Riemann solffeand the viscous contribu-
tions are discretized with a central-difference approach. The solution
obtained by using an implicit solution methodology with multigrid ac-
celeration. Details may be found in Refs. 2, 3, and 10. The adjoir
equations are a linear system of equations that can be solved witt
technique such as preconditioned GMRESlowever, in this work, a
time derivative is added to the equations so that they can be solv
with a time-marching procedure. The motivation for adding the time
term is that this approach often converges in situations for which tr
preconditioned GMRES might otherwise fail. This feature is particu-
larly useful when the turbulence model is fully coupled because th
turbulence production term tends to reduce diagonal dominance. B
cause the adjoint equations represent a linear system of equations,
matrix-vector products are currently formed by simply passing the
vector to the residual routine in place of the costate variables. By forn
ing the matrix-vector products in this way, the largest contribution tc
memory requirements is through the preconditioner (incomplet
lower/upper (LU) decomposition with no fill, ILU(0)), so that the re-
sulting scheme requires roughly the same amount of memory as t
flow solver. Note that this procedure essentially requires recomput:
tion of the linearization of the residual for each matrix-vector product.

Figure 1. Grid used for studying accuracy of derivatives.

Grid Generation and Mesh Movement For this test, the geometry of the airfoil is described with a third
The unstructured meshes used in this work are generated with torder B-spline with 39 control points. The derivatives of lift and
software package described in Ref. 25. This employs an advanciidrag coefficients with respect to angle of attack and to three shape
front method that generates good quality grids for both inviscid andesign variables are evaluated. The shape design variables corre-
viscous calculations. spond to the y-position of three control points located at
During the design process, the mesh is continuously updated as 1X/¢ = 0.103, x/c = 0.789, andx/c = 0.972 and designated as
shape of the geometry changes. This is accomplished using the te:D1. D2, andDj; , respectively. As seen in the tables below, the de-
nique described in Ref. 1, which shifts nodes near viscous surfaces fivatives obtained with the adjoint approach are in good agreement
interpolating the changes in the coordinates at the end points of tWith the finite-difference derivatives.
nearest surface edge. This technique is blended with a smoothing p
cedure so that away from the highly stretched cells near the surface 1 Table 1. Accuracy of Derivatives for Lift Coefficient
mesh movement reverts to that of the smoothing/edge-swapping pr

cedure described in Ref. 38. The combined procedure has been fou Finite-difference Adjoint
to work well for viscous grids with highly stretched triangles and very
(ilose spacing normal to the wall. Further details can be found in Re % 58278 5.8278

. Ja

Accuracy of Derivatives ac

The accuracy of the derivatives is established by comparing resul 3D- -1.9065 -1.9067
obtained by using the adjoint formulation with finite-difference deriv- !
atives. The case considered here is a symmetric airfoil at a free-strei 3G
Mach number of 0.55, an angle of attackléf , and a Reynolds nun - 1.3505 1.3505
ber of 9 million, based on the chord of the airfoil. The grid used it oD,
fairly coarse with only 2700 nodes and a spacing at the wall of abo! 3
5x 10*. (See Fig. 1.) The spacing at the wall has been chosen to 9% 0.44746 0.44746
large enough so that a stretched mesh can be obtained while allowi 0D,

the surface to be perturbed without moving the interior grid points
This is done in order to remain consistent with the assumption that tf
interior mesh sensitivities are neglected. Although this grid is obvi
ously inadequate for resolving the boundary layer accurately, it is su
ficient for verifying the linearization of the flow solver. When the gra-
dients are computed with finite differences, a central-difference
formula is used with a fixed step size for each design variable, and :
computations are converged to machine accuracy. For grids in whic
closer spacing at the wall is used, Hou éf&lave shown that obtain-
ing derivatives from finite differences can be highly sensitive to the
step size and to the level of convergence of the flow solver. With th
spacing at the wall used here, the flow solver is easily converged
machine zero, and numerical experiments indicate that the derivati



Table 2. Accuracy of Derivatives for Drag Coefficient each of theM basis functiorld;  is computed, which forms an
M’'x M matrix.

Finite-difference Adjoint Given the va_llues _of the basis f_unctior_ls at each input coordinate,
an overdetermined linear system is obtained:
?’ 0.057503 0.057503 M
o
X = Z xiN{'(s)) (27)

g% ~0.50394 ~0.50401 =0

! wherex; is thg-th input coordinate anM  is the number of control
acy points. Thex; are the unknown control point coordinates, and the
aD. —0.063550 —0.063547 x; are the input coordinates. The first and last control points are set

2 equal to the first and last input coordinates, and the corresponding
ac, equations are removed from the system. The system is then solved in
ID- -0.0084115 -0.0084114 the least-squares sense by using Householder transformations as de-

3 scribed in Ref. 16. After fitting each segment of a curve, the B-spline

segments are concatenated into a single B-spline by concatenating
Surface Representation and Graphical Interface the knot sequences and merging the control point coordinates.
In the current study, the geometries are modeled with B-splineGraphical interface

which offer great flexibility in the definition of the surfaces. By vary- A user interface has been written to facilitate the setup of each de-
ing the polynomial degree and the number of control points, a Widsign. The intent is to not only speed up the process of setting up each
range in the number of design variables and in surface fidelity can tcase but to help eliminate errors. Because a B-spline representation
obtained. On one hand, the design variables can be made to correspjs ysed to describe the geometries, the points on the surface of the
to the individual grid points on the surface by choosing a linear polyajrfoil must lie on this surface. Therefore, a least-squares fit of a B-
nomial and an appropriate number of control points. Conversely, a sispline curve to the point description of the airfoil is used. This pro-
gle polynomial curve of degreld  (known as a Bezier curve) can beess is described in a previous section and is demonstrated in Fig. 2
used to describe the geometry by choosing the number of contrfor 3 two-element airfoil, where the positions of the control points
points to beM +1 . In addition, through the knot sequence associatéare indicated by the symbols. The control panel on the right shows
with the spline, curves with sharp breaks in the surface, such as thcthat for the second element (the flap) a third-order B-spline with 25
that occur in cove regions and blunt trailing edges, can still be reprcontrol points is used to define the surface. The positions of these
sented in a single curve. control points are subsequently used as the design variables. Note
Spline fitting of input coordinates that although a cubic representation is used in the present example

Rather than using a conventional cubic spline of the input coordthe order of the spline can range from lineaMe-1 ~, witére is
nates, a B-spline of specified order and with a specified number (the number of points that define the airfoil. In the case for which
control points is matched to the input coordinates with a least-squarP0ints are used to define a curve of degkée-1 » the resulting
procedure. The design variables are, then, the coordinates of the CUrve corresponds to a Bezier representation. In the present exam-
spline control points, which can be considerably fewer in number anPle. the B-spline is evaluated at 129 points, which are then used as
are more geometrically meaningful than the original input coordinatednPut to the grid generation to define the surface. Although not
The following is a description of the B-spline representation and thShown, a similar procedure has also been used for the main element.
least-squares procedure. In Fig. 2, a “tear off” menu is also shown, which allows the user to

B-spline curves are described in detail in Ref. 15. They are definechoose whether various symbols are displayed.
as the sum of products of control-point coordinates and correspondii !N the next figure (Fig. 3), upper and lower limits have been
basis functions. The basis functions depend on the parametrization Placed on the y-coordinate of many of the control points, with the

the spline and a knot sequence and are defined recursively as followlimits depicted by the extent of the lines above and below the current
placement of the design variable. The limits are used as side con-

straints during the optimization process to prevent the occurrence of

n S—S_; n_1 Si+n no1 nonphysical geometries during the design process. The x-coordi-
Ni(s) = mNi (S)+mNi+l(S) nates can also be chosen as design variables by placing distinct
et A (25)  upper and lower bounds on their positions; if the upper and lower
o, _U1,5 ,<s<§ bounds are the same, then the design variable is not allowed to
Ni(s) = % 0. else change and is not considered in the optimization process.

Other capabilities include the ability to zoom and to translate the
geometry to manipulate it into position. This capability is particu-
where n is the degree of the basis function. The minimum and thlarly useful when placing side constraints near the trailing edges of
maximum values of the paramet®r appear times at the beginnirthe airfoils. Also, the shape of the airfoil surfaces can be changed
and the end of the knot sequence, respectively, so that the first and Isimply by picking and moving the control point, and the initial posi-
control points correspond to the end points of the B-spline. tion can be recovered.

A uniform parameterization is formed by setting the parameter  After splining the surface and setting the limits of the design vari-
that corresponds to each input coordinate equal to the number of tables, output is written in a format that is suitable for the grid gener-

coordinate in the sequence, starting from zero: ation program. A file that contains the geometric information, such
as the positions and limits of the control points, is also written. This
s =, j0[0,M] (26) file is continually updated during the design process to reflect the

changing shape. This file can be read in at a later date to reset the
limits on the design variables, to add more points to the surface defi-

where M" is the number of input coordinates. The knot sequence nition, or to reshape the geometry.

formed by uniform division of the parameter space. At each o§the
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Optimizer
The optimizer used in the current study is KSGPWhich uses a
guasi-Newton method to determine the search directions and a polyr
mial line search technique to determine the step length in the desce
direction. This code was chosen because it is capable of multipoint d
sign and can handle both equality and inequality constraints. In adc
tion, upper and lower bounds can be placed on design variables; ti
approach is currently used to enforce the geometric constraints nec
sary to maintain a viable geometry throughout the design cycle.

Results

Two sample results are given below. The first case is a computatic
of the flow over an airfoil at a free-stream Mach number of 0.4, ai
angle of attack o2’ , and a Reynolds number of 5 million. The goal ¢
the computation is simply to obtain a specified pressure distributior
The grid used for this computation is shown in Fig. 4 and consists (
approximately 5500 nodes with 128 nodes on the surface of the airfo
The spacing at the wall isx 105  of the chord length yielding a
of about 2. For this case, a single eighth-order Bezier curve is used
parameterize the surface, and only three design variables are allon
to change during the design process. The geometry is perturbed by ¢
placing three of the control points in the initial B-spline definition, and
the solution over this geometry is used for the target pressures. Aft
10 design cycles, the cost function is reduced from approximatel
1.5x 101 to 3.0x 107, and the root mean square of the gradients it
reduced froml.4 t&%.8x 104 . The initial and final pressure distribu-
tions and geometries are shown in Figs. 5 and 6. As seen, the tan
pressure distribution is obtained, and the geometry returns to that
the airfoil in the perturbed position.
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Figure 6. Initial and final geometries for case 1.

The next case is also an inverse design case in which the objective
is to match a specified pressure distribution. However, this case is
significantly more difficult because 75 design variables are used.
The initial grid used for this case consists of about 5300 nodes, and

has a spacing normal to the wall bf0x 10°
free-stream Mach number is 0.725, the angle of atta2l5ié

. (See Fig. 7.) The
, and

the Reynolds number is 6.5 million. For this case, 20 design cycles
were run at one time and restarted 2 times for a total of 60 design cy-
cles. The slower convergence of the design process with the increase
in the number of design variables is attributable to the poor perfor-
mance of quasi-Newton methods for aerodynamic design problems
with many design variabl€sAs seen in Fig. 8, the desired pressure
distribution is obtained reasonably well. However, slight waviness is
noted in the final pressure distribution. The need for curvature con-
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straints on the geometry is apparent. The final grid is shown in Fig. "
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Summary and Concluding Remarks

A two-dimensional design optimization methodology is de-
scribed. This research is an extension of the work in Ref. 1 to in-
clude a turbulence model for viscous flows. However, a discrete ad-
joint approach is used instead of the continuous adjoint approach so
that the sensitivity derivatives are more consistent with the flow
solver. The turbulence model is strongly coupled with the flow equa-
tions, and the accuracy of the derivatives is demonstrated through a
comparison with derivatives obtained by finite differences. A few
examples are presented to demonstrate the methodology.

In this regard, several recommendations are offered. First, the
slow convergence of the second test case, in which 75 design vari-
ables were used, shows that the quasi-Newton method is insufficient
for problems with many design variables because a large number of
design iterations is required before a good approximation of the Hes-
sian can be obtained. Even then, with many design variables, this
Hessian may remain inaccurate because much of the information is
obtained much earlier in the design process and may not represent
the Hessian in the vicinity of the minimum. However, direct compu-
tation of the Hessian for turbulent Navier-Stokes design cases is not
currently very efficient or practical because it requires the solution
of a linear system of equations for each design variable as well as
one for the adjoint. (See e.g., Refs. 33, and 40.) Methods that ap-
proximate the Hessian, such as described in Ref. 5, should be thor-
oughly evaluated and extended to viscous flows. Other methods,
such as pseudo-time techniqd®bave been demonstrated for invis-
cid flow computation® and should be examined for applicability to
viscous computations as well. In addition, the technique employed
in Refs. 21, and 22 should also be further evaluated. This technique
is essentially a time-marching technique in which the gradients are
smoothed at each step. For two-dimensional flows, this technique is
similar in application to that of the preconditioning method de-
scribed in Ref. 5. However, for three dimensions, the technique in
Ref. 5 requires the solution of an extra field equation. Finally,
Ta'asan has shown in Ref. 37 that designing for the slopes of the ge-
ometry instead of the location of the surface presents a design that is
easier and faster to converge. The use of slopes and curvatures in-
stead of points as design variables should, therefore, be considered.
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